Substrate-dependent electronic structure and film formation of MAPbI3 perovskites

نویسندگان

  • Selina Olthof
  • Klaus Meerholz
چکیده

We present investigations on the interface formation between the hybrid perovskite MAPbI3 and various substrates, covering a wide range of work functions. The perovskite films are incrementally evaporated in situ while the electronic structure is evaluated using photoelectron spectroscopy. Our results show that there is an induction period in the growth of the perovskite during which volatile compounds are formed, catalyzed by the substrate. The duration of the induction period depends strongly on the nature of the substrate material, and it can take up to 20-30 nm of formal precursor deposition before the surface is passivated and the perovskite film starts forming. The stoichiometry of the 2-3 nm thin passivation layer deviates from the expected perovskite stoichiometry, being rich in decomposition products of the organic cation. During the regular growth of the perovskite, our measurements show a deviation from the commonly assumed flat band condition, i.e., dipole formation and band bending dominate the interface. Overall, the nature of the substrate not only changes the energetic alignment of the perovskite, it can introduce gap states and influence the film formation and morphology. The possible impact on device performance is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition...

متن کامل

Optical characterizations of the surface states in hybrid lead-halide perovskites.

Methylammonium lead-iodide (CH3NH3PbI3, hereafter referred to as MAPbI3) perovskite has emerged as a dazzling nova in the solar cell realm. To date, the surface physics of these materials is still puzzling, but in this work, we demonstrate that the optical dynamics in MAPbI3 is primarily determined by the surface states. Pb dangling bonds on the surface of MAPbI3 introduce shallow electronic st...

متن کامل

Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are d...

متن کامل

Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation re...

متن کامل

Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites.

Hybrid perovskites, especially methylammonium lead iodide (MAPbI3), exhibit excellent solar power conversion efficiencies. However, their application is plagued by poor chemical and structural stability. Using direct calorimetric measurement of heats of formation, MAPbI3 is shown to be thermodynamically unstable with respect to decomposition to lead iodide and methylammonium iodide, even in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017